
Distributed Triangle Mesh Processing

Daniela Cabiddu
CNR-IMATI

Via De Marini 6
16149, Genova, Italy

daniela.cabiddu@ge.imati.cnr.it

Marco Attene
CNR-IMATI

Via De Marini 6
16149, Genova, Italy

marco.attene@ge.imati.cnr.it

ABSTRACT
We propose a web-based system to remotely and distributedly process triangle meshes. Users can implement
complex geometric procedures by composing simpler processing tools that, in their turn, can be provided by
researchers who publish them as appropriate Web services. We defined an efficient geometric data transfer protocol
in order to resolve the potential mesh delivery bottleneck caused by the transfer of large models to the various
servers on typical long-distance connections with limited bandwidth. We have experimented our system on several
large models and on diverse processing scenarios, and we have concluded that our transfer protocol significantly
reduces the overall time needed to produce the result.

Keywords
distributed processing, compression

1 INTRODUCTION
Geometry processing is now a mature research area
where new algorithms and processes are continuously
produced on top of state-of-the-art, already complex
previous works.
Researchers in this field often need reimplementing
algorithms from paper descriptions but, due to the
aforementioned level of complexity, this easily be-
comes a costly and error prone operation. Nonetheless,
researchers need to invent new algorithms and to fairly
compare them against previous works, and such a
need called for approaches to share shape models and
algorithms. Collaborative environments often need to
run experiments in distributed labs, where hardware
and software requirements must be satisfied by each
local machine in order to rebuild source codes and
install stand-alone applications.
We prove that the integration of web service technolo-
gies and workflow-based frameworks provides an ef-
fective solution to this problem. Our system makes
it possible to use a standard Web browser to remotely
run complex geometric algorithms by distributing the
various sequential steps on different servers that ex-
pose state-of-the-art algorithms in form of Web ser-
vices. Thanks to the system, experiments can be run

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

from any location, with no need of any local installation
or reimplementation of previous works. Since transfer-
ring large models to the various servers would represent
a bottleneck in the process, we defined an efficient geo-
metric data transfer protocol.

2 RELATED WORK
Running experiments is a fundamental activity in ge-
ometry processing research. A typical experiment in
this area consists in considering an input data set, per-
forming a sequence of operations on it, and analyzing
the results. Sometimes a fixed sequence of operations
is used to process a variety of data sets, whereas some
other times the operation list is slightly changed while
keeping the input constant.

In computer graphics and geometry processing, poly-
gon meshes are the dominant representations for 3D
objects, and diverse mesh processing software tools
exist. Among them, MeshLab [CCR08] and OpenFlip-
per [MK12] allow to interactively edit a mesh, save
the sequential list of executed operations and locally
re-execute the workflow from their user interfaces.
Pipelines can be shared in order to be rerun on different
machines where the stand-alone applications need to
be installed.

To get rid of any specific software, hardware, and oper-
ating system, Campen and colleagues published an on-
line service called WebBSP [Cam10] which is able to
remotely run a few specific geometric operations. The
system is accessible from a standard web browser and
the user is required to upload an input mesh; then, a
single geometric algorithm must be selected from a set
of available operations. The algorithm is actually run



on the server and a link to download its output is sent
to the user by email. The available operations are not
customizable by users, only one of them can be run at
each call, and the service is accessible only from the
WebBSP graphical interface.

Geometric Web services were previously considered
by Pitikakis [Pit10] with the objective of defining se-
mantic requirements to guarantee their interoperability.
Though in Pitikakis’s work Web services are stacked
into hardcoded sequences, users are not allowed to dy-
namically construct workflows, and geometric issues
such as the evaluation of mesh qualities (necessary to
support conditional tasks and loops) and the transmis-
sion of large models are not dealt with.

3 THE GEOMETRIC WORKFLOW
SYSTEM

Our system have been designed with the objective of
supporting computer graphics and geometry processing
research activities. Specifically, it allows the user to
build workflows to process and analyse 3D triangular
meshes and efficiently share the experiments through
the Internet. The “bricks” that constitute a workflow
are geometry processing algorithms that read an input
mesh and produce an output mesh. Any such algorithm
can be used as long as it is available online and acces-
sible as a web service, independently of the physical
location of the host server. Our framework currently
provides some “in-house” geometry processing algo-
rithms, but the architecture is open and fully extensible
by simply publishing a new algorithm as a web service
and by communicating its URL to the system.

The framework architecture (see Figure 1) is organized
in three layers, according to Hollingsworth WFM spec-
ifications [Hol95] and inspired to the already existing
WFMs in life science areas [TS07]. The first layer
includes a graphical user interface that allows build-
ing new workflows from scratch, uploading existing
pipelines and invoking available ones. A workflow can
either encode its input mesh (e.g. to allow replicating an
experiment) or accept a different input (e.g. to perform
a new experiment based on the same procedure). The
second layer contains the workflow engine responsible
of runtime execution, while the third layer includes the
web services that wrap geometry processing tools.

3.1 The Workflow Engine
The workflow engine is the core of the system and or-
chestrates the invocation of the various web services in-
volved. From the user interface it receives the specifi-
cation of a geometry processing workflow and possibly
the address of an input mesh to be downloaded from
the Internet. When all the data is available, the work-
flow engine sequentially invokes the various algorithms
and returns the URL of the eventual result to the user

Figure 1: The three-layered system architecture. A
graphical user interface allows to upload and run work-
flows. The workflow engine is responsible of work-
flow execution and manages the ordered list of tasks
that need to be run. Geometric tasks are made available
by distributed servers as web services.

interface. Note that in the long term the same operation
can be provided by more than one server. The engine is
responsible to select the most appropriate server provid-
ing each of them, by considering connection efficiency
and load balancing. In order to enable the definition of
non-trivial workflows, the engine is also able to manage
the execution of conditional tasks and loops, and dele-
gates the evaluation of the condition itself to specific
web services.

3.2 The Web Services
To the best of our knowledge, no existing repository
provides web service support to geometry processing
computations. Thus, we have implemented some of
them (see Table 1), and each can be considered as a
black box able to run a simple operation on a 3D tri-
angular mesh using possible input parameters, store the
output on the server where it is located and make the
output available by returning its address.

Note that a single server (i.e. a provider) can expose a
plurality of web services implementing a variety of al-
gorithms. Also, in order to support execution of loops
and conditional tasks, appropriate boolean web services
must be provided. For example, if it is necessary to in-
voke two different algorithms depending on whether the
mesh is manifold or not, a “isManifold” web service is
invoked that reads the mesh and returns a boolean value
to be used when checking the condition. Examples of
supported checks are shown in Table 2.

Web Service Parameters

Remove Smallest Components NONE
Remove Degenerate Triangles NONE
Add Noise % rel. bb diagonal
Laplacian Smoothing # iterations
Hole Filling NONE

Table 1: Web services that perform geometry process-
ing tasks.



Web Service Quality type

Check # vertices Integer
Check # edges Integer
Check # triangles Integer
Check manifoldness Boolean
Check orientation Boolean
Check orientability Boolean
Check minimum triangle angle Double
Check maximum triangle angle Double
Check average normal instability Double

Table 2: Web services able to check mesh qualities.

4 MESH TRANSFER PROTOCOL
To support the idea of including web services provided
by third parties, and to allow input models to be stored
on remote servers, we require that web services are
designed to receive the URL of the input mesh and
to download it locally; also, after execution of the al-
gorithm, the output must be made accessible through
a standard URL to be returned to the calling service.
Not surprisingly, we have observed that the transfer of
large-size meshes from a server to another according to
the aforementioned protocol constitutes a bottleneck in
the workflow execution, in particular when slow con-
nections are involved. Mesh compression techniques
can be used to reduce the input size, but they do not
solve the intrinsic problem. In order to improve the
transfer speed and thus efficiently support the process-
ing of large meshes, we designed a mesh transfer pro-
tocol inspired on the prediction/correction metaphor
used in data compression. The general idea of predic-
tion/correction works as follows. A sender S needs to
transmit a data set to a receiver R, but instead of trans-
mitting the whole data set at once, S sends a piece of
data only, let it be d0. Then, R tries to predict what the
next piece of data d1 will be based on the previously re-
ceived information d0. At the same time S does exactly
the same prediction and, instead of sending the next
piece of data, sends the difference between the predic-
tion and the actual data to be sent, that is c1 = d1 −d0.
Thus, R can calculate d1 by correcting the prediction
using c1. The benefits of all this machinery become ev-
ident when the predictions are accurate enough: in this
case the corrections to be sent are small if compared
with the original data and thus can be encoded with
fewer bits. A typical example in geometry processing
is the so-called “parallelogram rule” [TG98] used for
mesh compression.

We have observed that there are numerous mesh pro-
cessing algorithms that simply transform an input mesh
into an output by computing and applying local or
global modifications. Furthermore, in many cases mod-
ifications can be only local (e.g. sharp feature restora-
tion), may involve the geometry only while keeping the

connectivity unaltered (e.g. most mesh deformation al-
gorithms), or may modify both geometry and connec-
tivity while minimally changing the overall shape (e.g.
remeshing). In all these cases it is possible to predict
the result by assuming that it will be identical to the in-
put, and it is reasonable to expect that the corrections to
be transmitted can be more compactly encoded than the
explicit result of the process.

4.1 Concurrent Mesh Transfer
The aforementioned observation can be exploited in our
setting. Figure 2 shows an example of execution of a
simple workflow composed by three tasks. The engine
reads the whole workflow and, for each of the three
tasks requested, looks for a server exposing an appro-
priate web service (i.e. a web service which implements
the task). Then, the engine sends the address of the in-
put mesh to all the servers that have been identified so
that they can download it (Figure 2a). Right after hav-
ing sent the address, the engine triggers the first web
service (Figure 2b) to locally run the algorithm. Such
an algorithm produces both the output mesh and the
list of changes applied on the input to obtain the re-
sult (e.g. vertices/edges/triangles that have been added,
removed or modified). Both the output mesh and the
list of changes (i.e. the correction) are compressed and
made available through two URLs which are commu-
nicated to the workflow engine. In its turn, the engine
forwards this information to the next two web services
to be triggered, so that both of them can download the
compressed correction from the first server, and can re-
produce the output of the first step by decoding and ap-
plying the correction to the mesh that was previously
downloaded. At this point the engine triggers the sec-
ond web service (Figure 2c) that follows the same pro-
tocol by running the algorithm and publishing the URLs
of the output and the correction. Finally, the third web
service corrects its prediction, runs its task and returns
the URL of the final result (Figure 2d).

In a more general setting, the protocol works as fol-
lows. Through the user interface, the user selects/sends
a workflow and possibly the URL of an input mesh to
the workflow engine. The engine analyses the work-
flow, locates the most appropriate servers hosting the
involved web services, and sends in parallel to each of
them the address of the input mesh. Each server is trig-
gered to download the input model and save it locally.
At the first step of the experiment, the workflow engine
triggers the suitable web service that runs the algorithm,
produces the result, and locally stores the output mesh
and the correction file (both compressed). Their URLs
are returned to the workflow engine that forwards them
to all the subsequent servers involved in the workflow.
Each server downloads the correction and applies it to
the mesh it already has in memory in order to update
the local copy of the model. Then, the workflow engine



(a) (b) First Service

(c) Second Service (d) Third Service

Figure 2: Mesh Transfer Protocol Example. Three servers are involved into the workflow execution. Each of them
exposes a web service to support a geometry processing algorithm and two modules able to download (D) meshes
and update (U) the previously downloaded mesh by applying the corrections. (a) The engine shares in parallel the
address of the input mesh with all the involved servers that proceed with the download. (b) The first service runs
the task, produces the corrections and returns the corresponding address to the engine that shares it in parallel to the
following involved servers. Both download the file and correct the prediction. (c) The second service is invoked,
runs the task and makes the correction available, so that the third involved server can download it and update its
local copy of the mesh. (d) The engine triggers the third service that runs the algorithm and makes available the
modified output mesh so that it can be directly downloaded by the user.

triggers the next service for which an up-to-date copy
of the mesh is readily available on its local server. At
the end of the workflow execution, the engine receives
the address of the output produced by the last invoked
web service and returns it to the user interface, so that
the user can proceed with the download.
The Workflow Engine maintains a list of active tasks
whose corresponding Web services need to receive the
corrections and update their local copy of the mesh. Ini-
tially all the tasks involved in the workflow are active.
Upon termination, a “regular” task (i.e. neither an “IF”
nor a “WHILE”) is removed from the list meaning that
it is no longer involved in the workflow. The same hap-
pens when an “IF” task is encountered with true con-
dition. Conversely, after an “IF” or a “WHILE” whose
condition is false, all the tasks constituting the body are
removed from the list. After a “WHILE” with true con-
dition, an additional copy of all the tasks in its body is
added to the list.
In this scenario, the entire input mesh is broadcasted
only once at the beginning of the process, whereas the
final result is transmitted only once at the end. Inbe-

tween, only the corrections are broadcasted to the sub-
sequent servers. Thus, when the corrections are ac-
tually smaller than the partial results, this procedure
produces significant benefits. In any case, each web
service produces both the correction and the actual re-
sult so, should the former be larger than the latter, the
subsequent web services can directly download the out-
put instead of the corrections. Thus, our mesh transfer
protocol improves the overall performances when the
aforementioned conditions hold, while no degradation
is introduced otherwise.

4.2 Representation of the correction
A triangle mesh can be defined by an abstract simplicial
complex that specifies its connectivity endowed with a
set of vertex positions that uniquely identify its geo-
metric realization [Att13]. An algorithm that modifies
an input mesh can act on its geometry only (e.g. by
changing the position of the vertices), on its connectiv-
ity only (e.g. by triangulating boundary loops), or on
both. Typically, such an algorithm includes an analy-
sis part that performs the calculations to derive what to



add, modify or remove, and an editing part that applies
such changes to the mesh. Depending on the algorithm
these two parts may be not necessarily sequential, but
the editing operations can always be tracked and are
sufficient to reconstruct the result. In the worst case
where the mesh is completely rebuilt from scratch, this
list is a sequence of “add vertex” and “add triangle” op-
erations preceded by a “clear all” (see Table 3).

Simplex Operation Encoding

Triangles

Add T A v1 v2 v3
Remove T id R
Split (center) T id SPC
Split (generic point) T id SP x y z

Vertices
Add V A x y z
Move V id M x y z
Move All V MA

x1 y1 z1
x2 y2 z2
. . .

Edges

Add E A v1 v2
Swap E id SW
Collapse E id C
Split (midpoint) E id SP
Split (generic point) E id SP x y z

All Clear All CLEAR

Table 3: Supported editing operations. Italic labels in
the encodings indicate either simplex identifiers (i.e. in-
dexes) or vertex coordinates.

In our setting, each web service runs a geometry pro-
cessing algorithm, keeps track of the editing operations,
and saves them along with the final result. To do this,
the algorithm itself must be enriched with proper code
to stream such operations into the correction file. In
our current implementation we support atomic opera-
tions to encode the insertion, removal and modification
of single simplexes of any order (i.e. vertices, edges
and triangles). Each operation is identified by a unique
opcode, while each simplex is uniquely identified by an
integer ID. Thus, to represent an “edge swap” we need
an opcode representing the swap operation and an inte-
ger identifying the edge to be swapped. Besides such
atomic operations, we include some derived function-
alities that group atomic changes for the most diffused
editing operations. In many cases this allows to further
save storage space (and thus transmission time). For
example, let us suppose that we need to subdivide a tri-
angle into three subtriangles by inserting a new vertex:
in this case we would need to encode a “remove trian-
gle” (1 opcode + 1 ID), a “create vertex” (1 opcode +
3 coordinates), and three “create triangle” (3 opcode +
9 IDs for the vertices) operations. Conversely, if we
include a single “split triangle” operation in our set, we
can simply use its opcode endowed with the identifier of

the triangle to be split and the coordinates of the split-
ting vertex. Additional operations are defined both at
the level of the connected components (e.g. removal,
translation, rotation, ...) which, just as the simplexes,
are identified using IDs, and at the level of the whole
mesh.

When an algorithm terminates, the produced sequence
of operations is further compressed through arithmetic
coding to minimize redundancy [Sai02]. The applica-
tion of the correction by the subsequent web services
requires less computational efforts and time than the re-
run of the algorithm because of the fact that its analy-
sis part and the operation precondition checks are not
needed anymore.

Notice that sometimes a careful analysis of the algo-
rithm at hand allows to avoid streaming all the op-
erations. For example, let us consider an algorithm
that performs N iterations of Laplacian smoothing on
a mesh with V vertices. At each iteration all the ver-
tices are moved to the center of mass of their neighbors,
thus by a naive approach we would stream N ∗V ver-
tex shifts. A more clever implementation, however, can
simply stream the eventual global shift once for each
vertex, thus reducing the size by a factor of N.

5 RESULTS AND DISCUSSION
For the sake of experimentation, the proposed Work-
flow Management System has been deployed on a stan-
dard server running Windows 7, whereas web services
implementing atomic tasks and check mesh qualities
have been deployed on different machines to consti-
tute a distributed environment. However, since all the
servers involved in our experiments were in the same
lab with a gigabit network connection, we needed to
simulate a long-distance network by artificially limiting
the transfer bandwidth to 5 Mbps.

Then, to test such a system we defined multiple pro-
cessing workflows involving the available web services.
The dataset has been constructed by selecting some of
the most complex meshes currently stored within the
Digital Shape Workbench (see Table 4).

As an example, one of our test workflows is depicted in
Figure 3. The input model (Figure 3a) has 160 spuri-
ous disconnected components that are removed by the
first web service (Figure 3b). Then one iteration of
laplacian smoothing is applied (Figure 3c) by the sec-
ond web service to enhance the surface, while its 404
holes are patched by the third web service implement-
ing Liepa’s hole filling algorithm [Lie03] (Figure 3d).
Finally, degenerate triangles are removed by the fourth
web service (Figure 3e). This test gives a first idea of
the benefits provided by our transfer protocol: for ex-
ample, consider that all the simplexes removed in the
first step (≈ 3K vertices, ≈ 7.5K edges and ≈ 4.5K
triangles) could be encoded within a 11 KB correction



(a) (b) (c) (d) (e)

Figure 3: Local mesh repairing [ACK13]: a typical example of geometry processing workflow. (a) The raw
model. (b) Smallest components removed. (c) Laplacian smooth applied. (d) Holes filled. (e) Degenerate triangles
removed.

Mesh Isidore Nicolo Neptune Ramesses Raptor Dancers
Vertices 1.071.671 945.924 1.321.838 775.712 1.000.080 703.207

Triangles 2.128.494 1.886.968 2.643.684 1.537.462 2.000.000 1.399.805
Components 161 103 1 308 51 1
Boundaries 404 157 0 824 0 105

Table 4: Dataset extracted from the Digital Shape Workbench.

file, whereas the compressed output mesh file size was
20.5 MB.

The same workflow was run on all the other meshes
in our dataset to better evaluate the performance gain
achievable thanks to our concurrent mesh transfer pro-
tocol. Table 5 reports the size of the output mesh
and the size of the correction file after each operation
(both after compression) whereas Table 6 shows the to-
tal time spent by the workflow along with a more de-
tailed timing for each single phase. In both the tables
tasks are indicated by acronyms as follows: Removal
of Smallest Components (RSC), Laplacian Smoothing
(LS), Hole Filling (HF), and Removal of Degenerate
Triangles (RDT).

As expected, the corrections related to tasks that lo-
cally modify the model (eg. RSC, HF, RDT) are sig-
nificantly smaller than the whole output mesh by sev-
eral orders of magnitude; corrections regarding more
“global” tasks (eg. LS) are also smaller than the out-
put mesh, although in this latter case the correction file
is just two/three times smaller than the whole output.
Nevertheless, these results confirm that the proposed
concurrent mesh transfer protocol provides significant
benefits when the single steps produce mainly little or
local mesh modifications.

For each mesh in our dataset, Table 6 reports the time
spent by each algorithm to process the mesh (columns
RSC, LS, HF, RDT), the time needed to transfer the
correction file to the subsequent web service (columns
T1 . . .T3), and the time spent to update the mesh by
applying the correction (columns U1 . . .U3). For the
sake of comparison, below each pair (Ti,Ui) we also

included the time spent by transferring the whole com-
pressed result instead of the correction file, and the
overall relative gain achieved by our protocol is re-
ported in the last column. It is worth noticing that, in all
our test cases, the sum of the transfer and update times
is smaller than the time needed to transfer the whole
mesh, with a significant difference when the latter was
produced by applying little local modifications on the
input. Clearly, the additional instructions introduced in
the geometry processing algorithms to stream out the
corrections should be considered for a fair comparison,
but we have verified that such an overhead is definitely
negligible with respect to the overall processing time of
each algorithm, and therefore has not been reported in
Table 6.

As an additional example, Table 7 shows results con-
cerning the execution of a workflow involving a “while”
loop where Laplacian smoothing is applied as long
as the average normal instability exceeds a threshold
value. Times are related to a single workflow step (eg.
a web service execution or a data transfer), while num-
bers between parenthesis indicate how many times the
corresponding step is run during loop execution. Simi-
lar tests have been done involving the execution of con-
ditional tasks. It is worth noting that, in our test cases,
the mesh transfer protocol reduces the execution time if
the mesh satisfies the required mesh quality and there-
fore the subsequent web service is invoked. No advan-
tage and no degradation are introduced when the oper-
ation precondition does not hold due to the fact that no
output file is transferred from one server to the others.



Mesh RSC LS HF RDT

Isidore
20.573 23.333 23.717 25.497

11 9.433 154 2

Nicolo
19.498 21.447 20.601 20.171

3 9.296 48 2

Neptune
39.881 40.131 39.891 39.937

1 15.237 1 1

Ramesses
17.484 19.544 19.934 19.802

3 8.754 149 3

Raptor
14.465 15.621 15.552 15.441

688 10.195 1 1

Dancers
16.457 18.037 18.325 18.116

1 7.220 80 1

Table 5: Output sizes (in KB). For each mesh and for
each task, the first line shows the size of the com-
pressed output mesh, while the second line reports the
size of the compressed correction. Acronyms indi-
cate Removal of Smallest Components (RSC), Lapla-
cian Smoothing (LS), Hole Filling (HF), and Removal
of Degenerate Triangles (RDT).

To summarize, our tests show that the concurrent mesh
transfer protocol considerably reduces the amount of
data transferred among the servers, and thus the total
elaboration time.

As previously mentioned, if the output mesh produced
by a web service is smaller than the correction file, then
such an output is forwarded to the subsequent servers
that simply replace their local copy of the mesh. In
an ideal system, the time needed to apply the correc-
tion should be taken into account as well before choos-
ing whether to forward the whole mesh or the correc-
tion file. Unfortunately the update time depends on too
many factors (i.e. architecture of the host server, cur-
rent workload, ...) to be accurately guessed, but we ar-
gue that this is not a real issue because this case appears
to be unlikely to happen in practice.

Regarding the tasks that globally modify the mesh,
such as the Laplacian Smoothing, we suspect that a
clever analysis combined with coordinate quantization
can provide a much more compact representation of the
correction file.

Finally, we recognize that some algorithms that com-
pletely rebuild the mesh (e.g. from an intermediate rep-
resentation such as in [Ju04]) can hardly be reproduced
in a compact way through our current set of local edit-
ing operations. In these cases our mesh transfer proto-
col does not provide any advantage and the whole out-
put mesh should be transmitted.

6 CONCLUSION
We proposed a workflow-based framework to support
collaborative research in geometry processing. It al-
lows scientists to remotely run geometric algorithms

provided by other researchers as Web services and to
combine them in order to create geometric workflows
to be executed on any appropriate input mesh.

By distributing the workload, our system can count on
considerable computational resources and can be easily
extended if necessary, while the potential mesh deliv-
ery bottleneck has been resolved by our concurrent data
transfer protocol.

To further simplify the work of potential contributors,
we are currently investigating innovative techniques to
automatically compute the list of editing operations by
simply comparing the input and the output of each Web
service [DP13] introducing no degradation in the sys-
tem performance. Such a comparison module would
automatically derive the correction, without the need
for the contributor to turn the algorithm into an appro-
priate version able to stream the operations.

7 ACKNOWLEDGMENTS
This work has been partly supported by the PO CRO
Fondo Sociale Europeo Regione Liguria 2007-2013
Asse IV “Capitale Umano” Ob. Specifico I/6 through
the project “Tecniche di visualizzazione avanzata di
immagini e dati 3D in ambito biomedicale”, and by the
European Commission under grant agreement 262044
“VISIONAIR”. The authors are grateful to all the
colleagues at IMATI and Softeco Sismat Srl for the
helpful discussions.

8 REFERENCES
[ACK13] M. Attene, M. Campen, and L. Kobbelt.

Polygon mesh repairing: An application per-
spective. ACM Computing Surveys (CSUR),
45(2):15:1–15:33, March 2013.

[Att13] M. Attene. Surface mesh qualities. In
GRAPP/IVAPP, pages 79–85, 2013.

[Cam10] M. Campen. Webbsp 0.3
beta. http://www.graphics.rwth-
aachen.de/webbsp, 2010.

[CCR08] P. Cignoni, M. Corsini, and G. Ranzuglia.
Meshlab: an open-source 3d mesh process-
ing system. ERCIM News, (73):45–46, April
2008.

[DP13] J. D. Denning and F. Pellacini. Meshgit:
Diffing and merging meshes for polygonal
modeling. ACM Trans. Graph., 32(4):35:1–
35:10, July 2013.

[Hol95] D. Hollingsworth. Workflow management
coalition - the workflow reference model.
Technical report, Workflow Management
Coalition, January 1995.

[Ju04] T. Ju. Robust repair of polygonal models.
ACM Transactions on Graphics (Proc. SIG-
GRAPH), 23(3):888–895, 2004.



Mesh IB RSC T1 U1 LS T2 U2 HF T3 U3 RDT Total Benefits

Isidore
33,0 7,7 0,0 5,8 12,4 15,1 7,1 8,4 0,2 6,0 13,8 109,5

67%33,0 7,7 32,9 12,4 37,3 8,4 37,9 13,8 183,4

Nicolo
31,2 6,5 0,0 4,8 10,5 14,9 6,1 7,5 0,1 4,9 11,5 98,0

69%31,2 6,5 31,2 10,5 34,3 7,5 33,0 11,5 165,7

Neptune
63,8 13,0 0,0 0,0 18,6 24,4 11,0 12,6 0,0 0,0 14,4 157,8

99%63,8 13,0 63,8 18,6 64,2 12,6 63,8 14,4 314,2

Ramesses
28,0 6,7 0,0 4,3 9,6 14,0 5,4 7,0 0,2 4,5 10,3 90,0

70%28,0 6,7 28,0 9,6 31,3 7,0 31,9 10,3 152,8

Raptor
26,7 7,7 1,1 5,6 9,6 16,3 5,8 6,0 0,0 0,0 9,3 88,1

50%26,7 7,7 23,1 9,6 25,0 6,0 24,9 9,3 132,3

Dancers
26,3 4,9 0,0 0,0 7,3 11,6 4,3 5,2 0,1 3,6 7,0 70,3

92%26,3 4,9 26,3 7,3 28,9 5,2 29,3 7,0 135,2

Table 6: Elaboration times (in seconds). Acronyms indicate Input Broadcasting (IB), Removal of Smallest Com-
ponents (RSC), Laplacian Smoothing (LS), Hole Filling (HF), and Removal of Degenerate Triangles (RDT). Cells
labelled by Ti indicate the time needed to transfer the correction file. Cells labelled by Ui indicate the time needed
to update the mesh by applying the correction.

Mesh IB C_AVG_NI LS TN UN Total Benefits

Isidore
33,0 6,3 (4) 12,7 (3) 20,1 (3) 7,1 (3) 178,1

26%33,0 6,3 (4) 12,7 (3) 42,8 (3) 224,8

Nicolo
31,2 5,4 (4) 10,7 (3) 17,8 (3) 6,3 (3) 157,4

22%31,2 5,4 (4) 10,7 (3) 35,7 (3) 192,1

Neptune
63,8 11,2 (5) 19,2 (4) 24,8 (4) 11,7 (4) 342,7

32%63,8 11,2 (5) 19,2 (4) 64,3 (4) 453,6

Ramesses
28,0 5,4 (5) 9,8 (4) 14,7 (4) 5,7 (4) 175,6

28%28,0 5,4 (5) 9,8 (4) 32,7 (4) 224,8

Raptor
26,7 6,3 (5) 11,5 (4) 19,3 (4) 7,1 (4) 209,5

5%26,7 6,3 (5) 11,5 (4) 29,1 (4) 220,7

Dancers
26,3 4,5 (4) 8,5 (3) 13,4 (3) 5,3 (3) 125,8

28%26,3 4,5 (4) 8,5 (3) 30,5 (3) 161,3

Table 7: Elaboration times (in seconds). The test has been run on our dataset after the artificially addition of noise.
Acronyms indicate Input Broadcasting (IB), Laplacian Smoothing (LS) and Check Average Normal Instability
(C_AVG_NI). Cells labelled by TN indicate the time needed to transfer the correction file. Cells labelled by UN
indicate the time needed to update the mesh by applying the correction. Each elaboration time is related to a single
workflow step. The number between parenthesis indicates how many times the workflow step is run during loop
execution. Note that the precondition check is run once more, the last time it returns false and breaks the loop.

[Lie03] P. Liepa. Filling holes in meshes. In Pro-
ceedings of the 2003 Eurographics/ACM
SIGGRAPH Symposium on Geometry Pro-
cessing, SGP ’03, pages 200–205, Aachen,
Germany, 2003.

[MK12] J. Möbius and L. Kobbelt. Openflipper: An
open source geometry processing and ren-
dering framework. In Curves and Surfaces,
volume 6920 of Lecture Notes in Computer
Science, pages 488–500. Springer Berlin /
Heidelberg, 2012.

[Pit10] M. Pitikakis. A Semantic Based Approach
For Knowledge Management, Discovery and
Service Composition Applied To 3D Scientif
Objects. PhD thesis, University of Thes-

saly, School of Engineering, Department of
Computer and Communication Engineering,
2010.

[Sai02] A. Said. Introduction to arithmetic coding -
theory and practice. In Lossless Compres-
sion Handbook, pages 101–152. Academic
Press, 2002.

[TG98] C. Touma and C. Gotsman. Triangle mesh
compression. In Graphics Interface, pages
26–34. Canadian Human-Computer Com-
munications Society, 1998.

[TS07] A. Tiwari and A. K. T. Sekhar. Workflow
based framework for life science informat-
ics. Computational Biology and Chemistry,
(5-6):305–319, 2007.


